Search results

Search for "nanoscale morphology" in Full Text gives 15 result(s) in Beilstein Journal of Nanotechnology.

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • Fullerene (C60) has been deposited in ultrahigh vacuum on top of a zinc tetraphenylporphyrin (ZnTPP) monolayer self-assembled on a Fe(001)–p(1 × 1)O substrate. The nanoscale morphology and the electronic properties of the C60/ZnTPP/Fe(001)–p(1 × 1)O heterostructure have been investigated by scanning
PDF
Album
Full Research Paper
Published 30 Aug 2022

The effect of metal surface nanomorphology on the output performance of a TENG

  • Yiru Wang,
  • Xin Zhao,
  • Yang Liu and
  • Wenjun Zhou

Beilstein J. Nanotechnol. 2022, 13, 298–312, doi:10.3762/bjnano.13.25

Graphical Abstract
  • , such as template forming, plasma treatment, and chemical approaches. Previous studies mostly focused on the preparation process of the nanoscale morphology on the polymer surface [47][48][49]. The electrons on the polymer surface cannot be transferred to the conduction band and the charge cannot flow
  • can be concluded that nanocrystal strips can yield a good electron output. Due to the different surface contact charge densities of the copper nanoscale morphology, under pressure, the curved PTFE structure transfers more friction charges, which contributes greatly to improving the output performance
PDF
Album
Full Research Paper
Published 15 Mar 2022

Atomic layer deposited films of Al2O3 on fluorine-doped tin oxide electrodes: stability and barrier properties

  • Hana Krýsová,
  • Michael Neumann-Spallart,
  • Hana Tarábková,
  • Pavel Janda,
  • Ladislav Kavan and
  • Josef Krýsa

Beilstein J. Nanotechnol. 2021, 12, 24–34, doi:10.3762/bjnano.12.2

Graphical Abstract
  • buffer, pH 7.2) are shown in Figure S6 (Supporting Information File 1). The change in the surface nanoscale morphology can be explained by the replacement of SnO2 by Sn. Figure 8 and Table 2 show that increasing thickness values of ALD alumina layers led to an increase in the efficacy of suppression of
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2021

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • . pp-KPFM upon optical pumping of the organic solar cell The PTB7:PC71BM blend forming the active layer of the solar cell was processed from a chlorobenzene/DIO (CB/DIO) mixture (see Experimental section) with the aim to obtain an optimized nanoscale morphology [28]. The global performance deduced from
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Scanning probe microscopy for energy-related materials

  • Rüdiger Berger,
  • Benjamin Grévin,
  • Philippe Leclère and
  • Yi Zhang

Beilstein J. Nanotechnol. 2019, 10, 132–134, doi:10.3762/bjnano.10.12

Graphical Abstract
  • covalently grafted with a monolayer of poly(3-hexylthiophene) functionalized with carboxylic groups [8]. Their study unravels the physical mechanisms taking place locally during the photovoltaic process and its correlation to the nanoscale morphology. Electrochemical energy storage (i.e., in a battery) is a
PDF
Editorial
Published 10 Jan 2019

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

  • Janning F. Herrmann and
  • Christiane Höppener

Beilstein J. Nanotechnol. 2018, 9, 2188–2197, doi:10.3762/bjnano.9.205

Graphical Abstract
  • likely caused by distinct deviations of the gap geometry arising from the faceted structure of the applied colloidal AuNPs. Keywords: atomistic plasmonics; dumbbell dimer antennas; electromagnetic field enhancement; light confinement; nanolens; nanoscale morphology; Introduction The introduction of the
  • ] and theoretical studies [23][24]. In addition to these fundamental limits, the importance of the nanoscale morphology of antennas has been identified as a key parameter affecting their far-field and near-field optical properties [25][26][27][28][29][30]. The simplest antenna geometries, whose optical
  • ] linker molecule a gap size of 0.85 nm is found (lineprofile, Figure 5C). Overall, the observed gap sizes are in excellent agreement with the known height of CB[8] and only minor deviations occur. Nanoscale morphology of the gap region Furthermore, taking into account size variations of the dimer-forming
PDF
Album
Full Research Paper
Published 17 Aug 2018

A scanning probe microscopy study of nanostructured TiO2/poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications

  • Laurie Letertre,
  • Roland Roche,
  • Olivier Douhéret,
  • Hailu G. Kassa,
  • Denis Mariolle,
  • Nicolas Chevalier,
  • Łukasz Borowik,
  • Philippe Dumas,
  • Benjamin Grévin,
  • Roberto Lazzaroni and
  • Philippe Leclère

Beilstein J. Nanotechnol. 2018, 9, 2087–2096, doi:10.3762/bjnano.9.197

Graphical Abstract
  • -UGA, 17 rue des Martyrs F-38054, Grenoble, France 10.3762/bjnano.9.197 Abstract The nanoscale morphology of photoactive hybrid heterojunctions plays a key role in the performances of hybrid solar cells. In this work, the heterojunctions consist of a nanocolumnar TiO2 surface covalently grafted with a
  • photovoltaic process and the correlation to the nanoscale morphology. A down-shift of the vacuum level of the TiO2 surface upon grafting was measured by Kelvin probe force microscopy (KPFM), evidencing the formation of a dipole at the TiO2/P3HT-COOH interface. Upon in situ illumination, a positive photovoltage
  • energy, and their correlation with the nanoscale morphology of the active layer. A key aspect of this work consists in the joint analysis of these correlated PC-AFM and KPFM measurements, providing a more fundamental understanding of the photovoltaic mechanisms at stake in the systems. To the best of our
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2018

Increasing the stability of DNA nanostructure templates by atomic layer deposition of Al2O3 and its application in imprinting lithography

  • Hyojeong Kim,
  • Kristin Arbutina,
  • Anqin Xu and
  • Haitao Liu

Beilstein J. Nanotechnol. 2017, 8, 2363–2375, doi:10.3762/bjnano.8.236

Graphical Abstract
  • can be strengthened with the increased thickness of the Al2O3 layer while preserving its nanoscale morphology, a ca. 5 nm thick Al2O3 layer was deposited onto the template, and the reusability and morphology conservation were evaluated. The DNA nanostructures in the same location were scanned with AFM
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2017

Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth

  • Landon J. Brower,
  • Lauren K. Gentry,
  • Amanda L. Napier and
  • Mary E. Anderson

Beilstein J. Nanotechnol. 2017, 8, 2307–2314, doi:10.3762/bjnano.8.230

Graphical Abstract
  • film than the local sampling of the AFM. AFM has been integral to mapping out the nanoscale morphology of surMOF thin films as well as identifying features formed on the surface of MOF crystals [11][12][29][30][31][32]. AFM was employed to investigate how the morphology of the film changed as a
PDF
Album
Supp Info
Full Research Paper
Published 03 Nov 2017

Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

  • Katarzyna Grochowska,
  • Katarzyna Siuzdak,
  • Peter A. Atanasov,
  • Carla Bittencourt,
  • Anna Dikovska,
  • Nikolay N. Nedyalkov and
  • Gerard Śliwiński

Beilstein J. Nanotechnol. 2014, 5, 2102–2112, doi:10.3762/bjnano.5.219

Graphical Abstract
  • ][17][18]. It should be understood that laser dewetting refers to a physical phenomenon resulting from rapid heating and cooling while nanostructuring is a technological process characterized by nanoscale morphology. Therefore, the equivalent use of both terms is justified by the same underlying basic
PDF
Album
Review
Published 13 Nov 2014

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • improved neurites outgrowth due to both the high electrical conductivity of graphene (as in CNTs) and by the wrinkled nanoscale morphology of graphene layer. These properties render graphene a good adhesion substrate to cells. The use of graphene as an in vitro or an in vivo stimulator device was the
PDF
Album
Correction
Review
Published 23 Oct 2014

Fringe structures and tunable bandgap width of 2D boron nitride nanosheets

  • Peter Feng,
  • Muhammad Sajjad,
  • Eric Yiming Li,
  • Hongxin Zhang,
  • Jin Chu,
  • Ali Aldalbahi and
  • Gerardo Morell

Beilstein J. Nanotechnol. 2014, 5, 1186–1192, doi:10.3762/bjnano.5.130

Graphical Abstract
  • scattering, X-ray diffraction, and FTIR transmittance, respectively. For studies of the nanoscale morphology of BNNSs, the samples were simply scratched off and then transferred to the grids for TEM measurement. Results and Discussion Fringe structures of boron nitride nanosheets Figure 1 shows TEM images of
PDF
Album
Full Research Paper
Published 31 Jul 2014

Preparation of electrochemically active silicon nanotubes in highly ordered arrays

  • Tobias Grünzel,
  • Young Joo Lee,
  • Karsten Kuepper and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2013, 4, 655–664, doi:10.3762/bjnano.4.73

Graphical Abstract
  • following crucial properties: (1) quantitative and homogeneous conversion of the sample, (2) conservation of the nanoscale morphology, (3) facile removal of the byproduct, (4) possibility to be carried out at reasonably low temperature and within a short time. Results and Discussion Overview of the
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2013

Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

  • Pavel V. Komarov,
  • Pavel G. Khalatur and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 567–587, doi:10.3762/bjnano.4.65

Graphical Abstract
  • examination of various snapshots, it is evident that a lamella-like microphase-separated structure is formed in this small system. Thus we can conclude that even though the system is not large enough to investigate the nanoscale morphology, a hydrophilic/hydrophobic segregation indeed occurs in the hydrated
PDF
Album
Full Research Paper
Published 26 Sep 2013

Dimer/tetramer motifs determine amphiphilic hydrazine fibril structures on graphite

  • Loji K. Thomas,
  • Nadine Diek,
  • Uwe Beginn and
  • Michael Reichling

Beilstein J. Nanotechnol. 2012, 3, 658–666, doi:10.3762/bjnano.3.75

Graphical Abstract
  • alkyl chains. The nanoscale morphology is a consequence of the basic molecular geometry, where it follows that a closure to form a fibril is not always likely for the doubly substituted hydrazine. Therefore, we also observe crystallite formation. Keywords: fibrils; graphite; hydrazide; hydrazine
  • . Images represent raw data unless otherwise stated, and flattening was done only for large area images, by using the WSxM software [33]. A compact AFM (Easyscan, Nanosurf AG, Liestal, Switzerland) in contact-mode was used to characterize the nanoscale morphology. Silicon cantilevers (Nanosensors) with
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2012
Other Beilstein-Institut Open Science Activities